Respuesta :

Answer:

Option (1)

Step-by-step explanation:

From the picture attached,

tanθ = [tex]\frac{y}{x}[/tex]

Given : Polar equation as 'θ' = [tex]-\frac{5\pi }{6}[/tex]

Therefore, [tex]\text{tan}(-\frac{5\pi }{6} )[/tex] = [tex]\frac{y}{x}[/tex]

[tex]-\text{tan}(\frac{5\pi }{6} )[/tex] = [tex]\frac{y}{x}[/tex]   [Since tan(-θ) = -tanθ]

[tex]\text{tan}(\pi -\frac{5\pi }{6} )[/tex] = [tex]\frac{y}{x}[/tex] [Since -tanθ = tan(π - θ)]

[tex]\text{tan}\frac{\pi }{6}[/tex] = [tex]\frac{y}{x}[/tex]

[tex]\frac{y}{x}=\frac{\sqrt{3}}{3}[/tex]

y = [tex]\frac{\sqrt{3} }{3}x[/tex]

Therefore, y = [tex]\frac{\sqrt{3} }{3}x[/tex] will be the rectangular form of the polar equation.

Option (1) will be the correct option.

Ver imagen eudora