Write this expression as a complex number in standard form

Answer:
[tex]81+144i[/tex]
Step-by-step explanation:
We want to simplify:
[tex]\displaystyle (-3\sqrt{-81})(-5+\sqrt{-9}) + 9i[/tex]
Recall that:
[tex]\displaystyle \sqrt{-a} = i\sqrt{a}[/tex]
Therefore:
[tex]\displaystyle \begin{aligned} (-3\sqrt{-81})(-5+\sqrt{-9}) + 9i & = (-3i\sqrt{81})(-5+i\sqrt{9})+9i \\ \\ &= -(3i(9))(-5+i(3))+9i \\ \\ & = -27i(-5+3i)+9i \\ \\ & = 135i -81i^2 + 9i \\ \\ & = 144i - 81i^2 \\ \\ & = 81+144i\end{aligned}[/tex]
Note that i² = -1.
In conclusion:
[tex]\displaystyle (-3\sqrt{-81})(-5+\sqrt{-9})+9i = 81 + 144i[/tex]