Respuesta :
Answer:
The correct option is;
b) 0 sq, units
Step-by-step explanation:
The vertices of the triangle are;
(4, 0), (2, 3), (8, -6)
The distance formula fr finding the length of a segment is given as follows;
[tex]l = \sqrt{\left (y_{2}-y_{1} \right )^{2}+\left (x_{2}-x_{1} \right )^{2}}[/tex]
Where, (x₁, y₁) and (x₂, y₂) are the coordinates of the end points of the line
For the points (4, 0) and (2, 3) , we have;
√((3 - 0)² + (2 -4)²) = √13
Distance from (4, 0) to (2, 3) = √13
For the points (4, 0) and (8, -6) , we have;
√((-6 - 0)² + (8 -4)²) = √13 =
Distance from (4, 0) to (8, -6) = 2·√13
For the points (2, 3) and (8, -6) , we have;
√((-6 - 3)² + (8 -2)²) = 3·√13 =
Distance from (2, 3) to (8, -6) = 3·√13
Therefore, the perimeter of the triangle = 6·√13
The semi perimeter s = 3·√13
The area of the triangle, [tex]A = \sqrt{s\cdot \left (s-a \right )\cdot \left (s-b \right ) \cdot \left ( s-c \right )}[/tex]
Where;
a, b, and c are the length of the sides of the triangle;
[tex]A = \sqrt{3\cdot \sqrt{3} \cdot \left (3\cdot \sqrt{3} -\sqrt{3} \right )\cdot \left (3\cdot \sqrt{3} -2 \cdot \sqrt{3} \right ) \cdot \left ( 3\cdot \sqrt{3} -3\cdot \sqrt{3} \right )} = 0[/tex]
Therefore, the area = 0 sq, units.