Respuesta :
Answer:
(II). The fractions in simplest form
[tex]\dfrac{31}{35}[/tex], [tex]\dfrac{91}{165}[/tex] and [tex]\dfrac{13}{5}[/tex]
(III). The fractions in ascending order
[tex]\dfrac{91}{165}<\dfrac{31}{35}<\dfrac{13}{5}[/tex]
Explanation:
Given that,
(I). Represent the fractions in pictorial form
(II). Write the fractions in simplest form.
(III). Arrange them in ascending order.
Suppose, The fractions in pictorial form
(a). [tex]\dfrac{3}{5}+\dfrac{2}{7}[/tex]
(b). [tex]\dfrac{9}{11}-\dfrac{4}{15}[/tex]
(c). [tex]\dfrac{7}{10}+\dfrac{2}{5}+\dfrac{3}{2}[/tex]
We need to write in simplest form
Using given fraction
(a). [tex]\dfrac{3}{5}+\dfrac{2}{7}=\dfrac{3\times7}{5\times7}+\dfrac{2\times5}{7\times5}[/tex]
[tex]\dfrac{3}{5}+\dfrac{2}{7}=\dfrac{21}{35}+\dfrac{10}{35}[/tex]
[tex]\dfrac{3}{5}+\dfrac{2}{7}=\dfrac{21+10}{35}[/tex]
[tex]\dfrac{3}{5}+\dfrac{2}{7}=\dfrac{31}{35}[/tex]
(b). [tex]\dfrac{9}{11}-\dfrac{4}{15}=\dfrac{9\times15}{11\times15}-\dfrac{4\times11}{15\times11}[/tex]
[tex]\dfrac{9}{11}-\dfrac{4}{15}=\dfrac{135-44}{165}[/tex]
[tex]\dfrac{9}{11}-\dfrac{4}{15}=\dfrac{91}{165}[/tex]
(c). [tex]\dfrac{7}{10}+\dfrac{2}{5}+\dfrac{3}{2}=\dfrac{7}{10}+\dfrac{2\times2}{5\times2}+\dfrac{3\times5}{5\times2}[/tex]
[tex]\dfrac{7}{10}+\dfrac{2}{5}+\dfrac{3}{2}=\dfrac{7}{10}+\dfrac{4+15}{10}[/tex]
[tex]\dfrac{7}{10}+\dfrac{2}{5}+\dfrac{3}{2}=\dfrac{7+4+15}{10}[/tex]
[tex]\dfrac{7}{10}+\dfrac{2}{5}+\dfrac{3}{2}=\dfrac{26}{10}[/tex]
[tex]\dfrac{7}{10}+\dfrac{2}{5}+\dfrac{3}{2}=\dfrac{13}{5}[/tex]
We need to arrange them in ascending order
Using simplest form
The simplest fraction in ascending order
[tex]\dfrac{91}{165}<\dfrac{31}{35}<\dfrac{13}{5}[/tex]
Hence, This is required solution.