Respuesta :
Answer:
[tex]\huge\boxed{\sf \frac{a^2+b^2}{2(a^2-b^2)}}[/tex]
Step-by-step explanation:
=> [tex]\sf \frac{a}{2(a+b)} + \frac{b}{2(a-b)}[/tex]
LCM = 2(a+b)(a-b)
=> [tex]\sf \frac{a(a-b)+b(a+b)}{2(a+b)(a-b)}[/tex]
Simplifying further
=> [tex]\sf \frac{a^2-ab+ab+b^2}{2(a^2-b^2)}[/tex]
=> [tex]\sf \frac{a^2+b^2}{2(a^2-b^2)}[/tex]
[tex]\dfrac{a}{2(a+b)}+\dfrac{b}{2(a-b)}=\\\\\dfrac{a(a-b)}{2(a+b)(a-b)}+\dfrac{b(a+b)}{2(a+b)(a-b)}=\\\\\dfrac{a^2-ab}{2(a^2-b^2)}+\dfrac{ab+b^2}{2(a^2-b^2)}=\\\\\dfrac{a^2+b^2}{2(a^2-b^2)}[/tex]