Respuesta :

Answer:

The expression (-root3·a - a)², can be simplified into the form a² × (4 + 2·√3)

Step-by-step explanation:

The given expression can be written as follows;

(-root3·a - a)² = (-√3·a - a)²

Which can be expanded to give;

(-√3·a - a) × (-√3·a - a) = 3·a² + 2·√3·a² +a²

We collect like terms to get;

3·a² + 2·√3·a² +a² =  3·a² +a²+ 2·√3·a² = 4·a² + 2·√3·a²

We factorize out the common coefficients of the terms  to have;

4·a² + 2·√3·a² = a² × (4 + 2·√3)

Which gives the initial expression (-root3·a - a)², to presented in the form a² × (4 + 2·√3).