Respuesta :
Answer:
r² = 0.5652 < 0.7 therefore, the correlation between the variables does not imply causation
Step-by-step explanation:
The data points are;
X, Y
0.7, 1.11
21.9, 3.69
18, 4
16.7, 3.21
18, 3.7
13.8, 1.42
18, 4
13.8, 1.42
15.5, 3.92
16.7, 3.21
The correlation between the values is given by the relation
Y = b·X + a
[tex]b = \dfrac{N\sum XY - \left (\sum X \right )\left (\sum Y \right )}{N\sum X^{2} - \left (\sum X \right )^{2}}[/tex]
[tex]a = \dfrac{\sum Y - b\sum X}{N}[/tex]
Where;
N = 10
∑XY = 499.354
∑X = 153.1
∑Y = 29.68
∑Y² = 100.546
∑X² = 2631.01
(∑ X)² = 23439.6
(∑ Y)² = 880.902
From which we have;
[tex]b = \dfrac{10 \times 499.354 -153.1 \times 29.68}{10 \times 2631.01 - 23439.6} = 0.1566[/tex]
[tex]a = \dfrac{29.68 - 0.1566 \times 153.1}{10} = 0.5704[/tex]
[tex]r = \dfrac{N\sum XY - \left (\sum X \right )\left (\sum Y \right )}{\sqrt{\left [N\sum X^{2} - \left (\sum X \right )^{2} \right ]\times \left [N\sum Y^{2} - \left (\sum Y \right )^{2} \right ]}}[/tex]
[tex]r = \dfrac{10 \times 499.354 -153.1 \times 29.68}{\sqrt{\left (10 \times 2631.01 - 23439.6 \right )\times \left (10 \times 100.546- 880.902\right )} } = 0.7518[/tex]
r² = 0.5652 which is less than 0.7 therefore, there is a weak relationship between the variables, and it does not imply causation.