WILL GIVE BRAINLY PLEASE HELP!!!!!!!
Describe the type of correlation between two variables on the scatterplot. How do you know? Does the correlation between the variables imply causation? Explain

contains points:
(0.7,1.11)
(21.9,3.69)
(18,4)
(16.7,3.21)
(18,3.7)
(13.8,1.42)
(18,4)
(13.8,1.42)
(15.5,3.92)
(16.7,3.21)

Respuesta :

Answer:

r² = 0.5652  < 0.7 therefore, the correlation between the variables does not imply causation

Step-by-step explanation:

The data points are;

X,          Y

0.7,       1.11

21.9,     3.69

18,         4

16.7,      3.21

18,         3.7

13.8,      1.42

18,          4

13.8,      1.42

15.5,      3.92

16.7,       3.21

The correlation between the values is given by the relation

Y =   b·X + a

[tex]b = \dfrac{N\sum XY - \left (\sum X \right )\left (\sum Y \right )}{N\sum X^{2} - \left (\sum X \right )^{2}}[/tex]

[tex]a = \dfrac{\sum Y - b\sum X}{N}[/tex]

Where;

N = 10

∑XY = 499.354

∑X = 153.1

∑Y = 29.68

∑Y² = 100.546

∑X² = 2631.01

(∑ X)² = 23439.6

(∑ Y)² = 880.902

From which we have;

[tex]b = \dfrac{10 \times 499.354 -153.1 \times 29.68}{10 \times 2631.01 - 23439.6} = 0.1566[/tex]

[tex]a = \dfrac{29.68 - 0.1566 \times 153.1}{10} = 0.5704[/tex]

[tex]r = \dfrac{N\sum XY - \left (\sum X \right )\left (\sum Y \right )}{\sqrt{\left [N\sum X^{2} - \left (\sum X \right )^{2} \right ]\times \left [N\sum Y^{2} - \left (\sum Y \right )^{2} \right ]}}[/tex]

[tex]r = \dfrac{10 \times 499.354 -153.1 \times 29.68}{\sqrt{\left (10 \times 2631.01 - 23439.6 \right )\times \left (10 \times 100.546- 880.902\right )} } = 0.7518[/tex]

r² = 0.5652  which is less than 0.7 therefore, there is a weak relationship between the variables, and it does not imply causation.