Answer:
The triangle is not equilateral.
Step-by-step explanation:
Distance formula:
[tex] d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]
Distance from (a, a) to (-a, -a):
[tex] d_1 = \sqrt{(-a - a)^2 + (-a - a)^2} [/tex]
[tex] d_1 = \sqrt{(-2a)^2 + (-2a)^2} [/tex]
[tex] d_1 = \sqrt{8a^2} [/tex]
Distance from (-a, -a) to (-3a, 3a):
[tex] d_2 = \sqrt{(-3a - (-a))^2 + (3a - (-a))^2} [/tex]
[tex] d_2 = \sqrt{(-2a)^2 + (4a)^2} [/tex]
[tex] d_2 = \sqrt{20a^2} [/tex]
Distance from (-3a, 3a) to (a, a):
[tex]d_3 = \sqrt{(-3a - a)^2 + (3a - a)^2}[/tex]
[tex]d_3 = \sqrt{(-4a)^2 + (2a)^2}[/tex]
[tex]d_3 = \sqrt{20a^2}[/tex]
The three sides do not have the same length, so the triangle is not equilateral.