HELP ASAP
What is the distance, in units, between the points [tex](-3, -4)[/tex] and [tex](4, -5)[/tex]? Express your answer in simplest radical form.

Respuesta :

Answer:

d=5√2 unit

Step-by-step explanation:

distance between two points d=√(x2-x1)²+(y2-y1)²

two pints (-3,-4) and (4,-5)

d=√(4-(-3)²+(-5-(-4)²

d=√(4+3)²+(-5+4)²

d=√49+1

d=√50

d=√25*2

d=5√2

Answer

[tex] \boxed{5 \sqrt{2} \: \: \:units}[/tex]

Step by step explanation

Let the points be A and B

A ( - 3 , - 4 ) ⇒( x₁ , y₁ )

B ( 4 , - 5 )⇒( x₂ , y₂ )

Now, let's find the distance between these points :

Distance = [tex] \mathsf{ \sqrt{ {(x2 - x1)}^{2} + {(y2 - y1)}^{2} } }[/tex]

Plug the values

⇒[tex] \mathsf{ \sqrt{ {(4 - ( - 3))}^{2} + {( - 5 - ( - 4))}^{2} } }[/tex]

Calculate

⇒[tex] \mathsf{ \sqrt{ {(4 + 3)}^{2} + {( - 5 + 4)}^{2} } }[/tex]

⇒[tex] \mathsf{ \sqrt{ {(7)}^{2} + {( - 1)}^{2} } }[/tex]

Evaluate the power

⇒[tex] \mathsf{ \sqrt{49 + 1} }[/tex]

Add the numbers

⇒[tex] \mathsf{ \sqrt{50} }[/tex]

Simplify the radical expression

⇒[tex] \mathsf{5 \sqrt{2} \: \: units}[/tex]

Hope I helped!

Best regards!!