Respuesta :

Answer:

y = [tex]\sqrt[3]{x-5}[/tex]

Step-by-step explanation:

To find the inverse of any function you basically switch x and y.

function = y = x^3 + 5

Now we switch x and y

x = y^3 +5

Solve for y,

x - 5 = y^3

switch sides,

y^3 = x-5

y = [tex]\sqrt[3]{x-5}[/tex]

Answer:

[tex]\Large \boxed{{f^{-1}(x)=\sqrt[3]{x-5}}}[/tex]

Step-by-step explanation:

The function is given,

[tex]f(x)=x^3 +5[/tex]

The inverse of a function reverses the original function.

Replace f(x) with y.

[tex]y=x^3 +5[/tex]

Switch variables.

[tex]x=y^3 +5[/tex]

Solve for y to find the inverse.

Subtract 5 from both sides.

[tex]x-5=y^3[/tex]

Take the cube root of both sides.

[tex]\sqrt[3]{x-5} =y[/tex]