Respuesta :

Answer:

See below.

Step-by-step explanation:

[tex]\frac{u-x}{v-x}=\frac{u}{v^2} \\[/tex]

Cross multiply and distribute.

[tex]u(v-x)=v^2(u-x)\\uv-ux=uv^2-xv^2[/tex]

Move all the u to the left side:

[tex]uv-ux-uv^2=-xv^2[/tex]

Factor out a u:

[tex]u(v-x-v^2)=-xv^2[/tex]

Divide:

[tex]u=\frac{-xv^2}{v-x-v^2}=\frac{xv^2}{x+v^2-v}[/tex]

(I factored out a negative in the second term.)