Answer:
$3,717
Step-by-step explanation:
Hello, in 1 year there are 12 months.
Let's note I the Initial amount.
So, after 1 month we will get the following, because we compute the interest amount for one month only.
I * ( 1 + 6% * (1/12) )
And the next month, we will have interest of the amount available from previous month so it gives
[tex]I * ( 1+6\% * \dfrac{1}{12} ) * ( 1+6\% * \dfrac{1}{12} ) \\\\=I*(1+\dfrac{6}{12*100})^2\\\\=I*(1+\dfrac{1}{200})^2\\\\=I*(1.005)^2[/tex]
... and after n months ...
[tex]I*(1.005)^n[/tex]
8 years is 8*12 = 96 months. so we are looking for I such that
[tex]I*(1.005)^{96}=6000\\\\<=> I =\dfrac{6000}{1.005^{96}}\\\\=\boxed{3717.14345....}[/tex]
Thank you.