Respuesta :

Answer:

[tex](1,-1)[/tex] and [tex](3.5,1.5)[/tex]

Step-by-step explanation:

Given

[tex]y = 2x^2 - 8x+5[/tex]

[tex]y = x - 2[/tex]

Required

Determine the solution

Substitute x - 2 for y in [tex]y = 2x^2 - 8x+5[/tex]

[tex]x - 2 = 2x^2 - 8x+5[/tex]

Collect like terms

[tex]0 = 2x^2 - 8x - x + 5 + 2[/tex]

[tex]0 = 2x^2 - 9x + 7[/tex]

Expand the expression

[tex]0 = 2x^2 - 7x - 2x+ 7[/tex]

Factorize

[tex]0 = x(2x - 7) -1(2x - 7)[/tex]

[tex]0 = (x-1)(2x - 7)[/tex]

Split the expression

[tex]x - 1 = 0[/tex] or [tex]2x - 7 = 0[/tex]

Solve for x in both cases

[tex]x = 1[/tex] or [tex]2x = 7[/tex]

[tex]x = 1[/tex] or [tex]2x/2 = 7/2[/tex]

[tex]x = 1[/tex] or [tex]x = 3.5[/tex]

Recall that

[tex]y = x - 2[/tex]

When [tex]x = 1[/tex]

[tex]y = 1 -2[/tex]

[tex]y = -1[/tex]

When [tex]x = 3.5[/tex]

[tex]y = 3.5 - 2[/tex]

[tex]y = 1.5[/tex]

Hence, the solution is;

[tex](1,-1)[/tex] and [tex](3.5,1.5)[/tex]