Answer:
[tex]a_n = 8 + (n - 1) (-6)[/tex]
Step-by-step explanation:
Given
[tex]a_1 = 8[/tex]
Recursive: [tex]a_{n} = a_{n-1} - 6[/tex]
Required
Determine the formula
Substitute 2 for n to determine [tex]a_2[/tex]
[tex]a_{2} = a_{2-1} - 6[/tex]
[tex]a_{2} = a_{1} - 6[/tex]
Substitute [tex]a_1 = 8[/tex]
[tex]a_2 = 8 - 6[/tex]
[tex]a_2 = 2[/tex]
Next is to determine the common difference, d;
[tex]d = a_2 - a_1[/tex]
[tex]d = 2 - 8[/tex]
[tex]d = -6[/tex]
The nth term of an arithmetic sequence is calculated as
[tex]a_n = a_1 + (n - 1)d[/tex]
Substitute [tex]a_1 = 8[/tex] and [tex]d = -6[/tex]
[tex]a_n = a_1 + (n - 1)d[/tex]
[tex]a_n = 8 + (n - 1) (-6)[/tex]
Hence, the nth term of the sequence can be calculated using[tex]a_n = 8 + (n - 1) (-6)[/tex]