A machine fills boxes weighing Y lb with X lb of salt, where X and Y are normal with mean 100 lb and 5 lb and standard deviation 1 lb and 0.5 lb, respectively. What percent of filled boxes weighing between 104 lb and 106 lb are to be expected?
a. 67%
b. None
c. 37%
d. 57%

Respuesta :

Answer:

Option b. None is the correct option.

The Answer is 63%

Step-by-step explanation:

To solve for this question, we would be using the z score formula

The formula for calculating a z-score is given as:

z = (x-μ)/σ,

where

x is the raw score

μ is the population mean

σ is the population standard deviation.

We have boxes X and Y. So we will be combining both boxes

Mean of X = 100 lb

Mean of Y = 5 lb

Total mean = 100 + 5 = 105lb

Standard deviation for X = 1 lb

Standard deviation for Y = 0.5 lb

Remember Variance = Standard deviation ²

Variance for X = 1lb² = 1

Variance for Y = 0.5² = 0.25

Total variance = 1 + 0.25 = 1.25

Total standard deviation = √Total variance

= √1.25

Solving our question, we were asked to find the percent of filled boxes weighing between 104 lb and 106 lb are to be expected. Hence,

For 104lb

z = (x-μ)/σ,

z = 104 - 105 / √25

z = -0.89443

Using z score table ,

P( x = z)

P ( x = 104) = P( z = -0.89443) = 0.18555

For 1061b

z = (x-μ)/σ,

z = 106 - 105 / √25

z = 0.89443

Using z score table ,

P( x = z)

P ( x = 106) = P( z = 0.89443) = 0.81445

P(104 ≤ Z ≤ 106) = 0.81445 - 0.18555

= 0.6289

Converting to percentage, we have :

0.6289 × 100 = 62.89%

Approximately = 63 %

Therefore, the percent of filled boxes weighing between 104 lb and 106 lb that are to be expected is 63%

Since there is no 63% in the option, the correct answer is Option b. None.

The percent of filled boxes weighing between 104 lb and 106 lb is to be expected will be 63%.

What is a normal distribution?

It is also called the Gaussian Distribution. It is the most important continuous probability distribution. The curve looks like a bell, so it is also called a bell curve.

The z-score is a numerical measurement used in statistics of the value's relationship to the mean of a group of values, measured in terms of standards from the mean.

A machine fills boxes weighing Y lb with X lb of salt, where X and Y are normal with a mean of 100 lb and 5 lb and standard deviation of 1 lb and 0.5 lb, respectively.

The percent of filled boxes weighing between 104 lb and 106 lb is to be expected will be

Then the Variance will be

[tex]Var = \sigma ^2[/tex]

Then for X, we have

[tex]Var (X) = 1^2 = 1[/tex]

Then for Y, we have

[tex]Var (Y) = 0.5^2 = 0.25[/tex]

Then the total variance will be

[tex]Total \ Var (X+Y) = 1 + 0.25 = 1.25[/tex]

The total standard deviation will be

[tex]\sigma _T = \sqrt{Var(X+Y)}\\\\\sigma _T = \sqrt{1.25}[/tex]

For 104 lb, then

[tex]z = \dfrac{104-105}{\sqrt{25}} = -0.89443\\\\P(x = 104) = 0.18555[/tex]

For 106 lb, then

[tex]z = \dfrac{106-105}{\sqrt{25}} = 0.89443\\\\P(x = 106) = 0.81445[/tex]

Then

[tex]P(104 \leq Z \leq 106) = 0.81445 - 0.18555 = 0.6289 \ or \ 62.89\%[/tex]

Approximately, 63%.

More about the normal distribution link is given below.

https://brainly.com/question/12421652