Respuesta :
Answer:
The p-value is [tex]p-value = 0.62578[/tex]
Step-by-step explanation:
From the question we are told that
The sample size of male infant is [tex]n_1 = 12[/tex]
The sample size of female infant is [tex]n_2= 9[/tex]
The sample mean of male infant is [tex]\= x_1 = 7.70 \ lb[/tex]
The sample mean of female infant is [tex]\= x_2 = 7.80 \ lb[/tex]
The population standard deviation is [tex]\sigma = 0.5[/tex]
The significance level is [tex]\alpha = 0.05[/tex]
The null hypothesis is [tex]H_o : \mu_ 1 = \mu_2[/tex]
The alternative hypothesis is [tex]H_1 : \mu_1 > \mu_2[/tex]
The test statistics is mathematically represented as
[tex]t =\frac{\= x_1 - \= x_2 }{\sqrt{\frac{\sigma }{n_1} } + \frac{\sigma }{n_2} } }[/tex]
=> [tex]t = \frac{7.70 -7.80}{\sqrt{\frac{0.5 }{12} } + \frac{0.5 }{9} } }[/tex]
=> [tex]t = -0.3207[/tex]
From the z-table the p-value is obtained, the value is
[tex]p-value = P(Z > -0.3207) = 0.62578[/tex]
[tex]p-value = 0.62578[/tex]