A guitar string is 90 cm long and has a mass of 3.5g . The distance from the bridge to the support post is L=62cm, and the string is under a tension of 540N . What are the frequencies of the fundamental and first two overtones? Express your answers using two significant figures. Enter your answers in ascending order separated by commas.

Respuesta :

Answer:

[tex]v_1 = 301 Hz[/tex]

[tex]v_2 = 601 \ \ Hz[/tex]

[tex]v_3 = 901 \ Hz[/tex]

Explanation:

From the question we are told that

     The  length of the string is  [tex]l = 90 \ cm = 0.9 \ m[/tex]

     The mass of the string is  [tex]m_s = 3.5 \ g =0.0035 \ kg[/tex]

     The  distance  from the bridge to the support post [tex]L = 62 \ c m = 0.62 \ m[/tex]

    The tension is [tex]T = 540 \ N[/tex]

Generally the frequency is mathematically represented as

        [tex]v = \frac{n}{2 * L } [\sqrt{ \frac{T}{\mu} } ][/tex]

Where n is and integer that defines that overtones

i.e  n =   1 is for fundamental frequency

      n =  2   first overtone

       n =3   second overtone

Also  [tex]\mu[/tex] is the linear density of the string which is mathematically represented as

           [tex]\mu = \frac{m_s}{l}[/tex]

=>        [tex]\mu = \frac{0.0035 }{ 0.9 }[/tex]

=>       [tex]\mu = 0.003889 \ kg/m[/tex]

So for   n = 1

     [tex]v_1 = \frac{1}{2 * 0.62 } [\sqrt{ \frac{ 540}{0.003889} } ][/tex]

     [tex]v_1 = 301 \ Hz[/tex]

So for  n =  2

     [tex]v_2 = \frac{2}{2 * 0.62 } [\sqrt{ \frac{ 540}{0.003889} } ][/tex]

     [tex]v_2 = 601 \ Hz[/tex]

So for  n =  3

     [tex]v_3 = \frac{3}{2 * 0.62 } [\sqrt{ \frac{ 540}{0.003889} } ][/tex]

     [tex]v =901 \ Hz[/tex]