Answer:
a
[tex]df = 24.32[/tex]
b
[tex]df = 30.10[/tex]
c
[tex]df = 30.7[/tex]
d
[tex]df = 25.5[/tex]
Step-by-step explanation:
Generally degree of freedom is mathematically represented as
[tex]df = \frac{ [\frac{ s^2_i }{m} + \frac{ s^2_j }{n} ]^2 }{ \frac{ [ \frac{s^2_i}{m} ]^2 }{m-1 } +\frac{ [ \frac{s^2_j}{n} ]^2 }{n-1 } }[/tex]
Considering a
a) m = 12, n = 15, s1 = 4.0, s2 = 6.0
[tex]df = \frac{ [\frac{ 4^2 }{12} + \frac{ 6^2 }{15} ]^2 }{ \frac{ [ \frac{4^2}{12} ]^2 }{12-1 } +\frac{ [ \frac{6^2}{15} ]^2 }{15-1 } }[/tex]
[tex]df = 24.32[/tex]
Considering b
(b) m = 12, n = 21, s1 = 4.0, s2 = 6.0
[tex]df = \frac{ [\frac{ 4^2 }{12} + \frac{ 6^2 }{21} ]^2 }{ \frac{ [ \frac{4^4}{12} ]^2 }{12-1 } +\frac{ [ \frac{6^2}{21} ]^2 }{21-1 } }[/tex]
[tex]df = 30.10[/tex]
Considering c
(c) m = 12, n = 21, s1 = 3.0, s2 = 6.0
[tex]df = \frac{ [\frac{ 3^2 }{12} + \frac{ 6^2 }{21} ]^2 }{ \frac{ [ \frac{3^4}{12} ]^2 }{12-1 } +\frac{ [ \frac{6^2}{21} ]^2 }{21-1 } }[/tex]
[tex]df = 30.7[/tex]
Considering c
(d) m = 10, n = 24, s1 = 4.0, s2 = 6.0
[tex]df = \frac{ [\frac{ 4^2 }{10} + \frac{ 6^2 }{24} ]^2 }{ \frac{ [ \frac{4^2}{10} ]^2 }{10-1 } +\frac{ [ \frac{6^2}{24} ]^2 }{24-1 } }[/tex]
[tex]df = 25.5[/tex]