Respuesta :
Answer:
The magnitude of the charge is 54.9 nC.
Explanation:
The charge on each bead can be found using Coulomb's law:
[tex] F_{e} = \frac{k*q_{1}q_{2}}{r^{2}} [/tex]
Where:
q₁ and q₂ are the charges, q₁ = q₂
r: is the distance of spring stretching = 4.8x10⁻² m
[tex]F_{e}[/tex]: is the electrostatic force
[tex] F_{e} = \frac{k*q^{2}}{r^{2}} \rightarrow q = \sqrt{\frac{F_{e}}{k}}*r [/tex]
Now, we need to find [tex]F_{e}[/tex]. To do that we have that Fe is equal to the spring force ([tex]F_{k}[/tex]):
[tex] F_{e} = F_{k} = -kx [/tex]
Where:
k is the spring constant
x is the distance of the spring = 4.8 - 4.0 = 0.8 cm
The spring constant can be found by equaling the sping force and the weight force:
[tex] F_{k} = -W [/tex]
[tex] -k*x = -m*g [/tex]
where x is 5.2 - 4.0 = 1.2 cm, m = 1.8 g and g = 9.81 m/s²
[tex] k = \frac{mg}{x} = \frac{1.8 \cdot 10^{-3} kg*9.81 m/s^{2}}{1.2 \cdot 10^{-2} m} = 1.47 N/m [/tex]
Now, we can find the electrostatic force:
[tex] F_{e} = F_{k} = -kx = -1.47 N/m*0.8 \cdot 10^{-2} m = -0.0118 N [/tex]
And with the magnitude of the electrostatic force we can find the charge:
[tex]q = \sqrt{\frac{F_{e}}{k}}*r = \sqrt{\frac{0.0118 N}{9 \cdot 10^{9} Nm^{2}/C^{2}}}*4.8 \cdot 10^{-2} m = 54.9 \cdot 10^{-9} C = 54.9 nC[/tex]
Therefore, the magnitude of the charge is 54.9 nC.
I hope it helps you!
The magnitude of the charge (in nC) on each bead is equal to 55.21 nC.
Given the following data:
- Original length = 4.0 cm to m = 0.04 m
- Mass = 1.8 grams to kg = 0.0018
- New length = 5.2 cm to m = 0.052.
- Final length = 4.8 cm to m = 0.048 m.
Extension, e = [tex]0.052 - 0.048[/tex] = 0.012 m
Scientific data:
- Acceleration due to gravity = 9.8 [tex]m/s^2[/tex]
- Coulomb's constant = [tex]8.99 \times 10^9\; Nm^2/C^2[/tex]
To calculate the magnitude of the charge (in nC) on each bead, we would apply Coulomb's law:
First of all, we would determine the spring constant of this lightweight spring by using this formula:
[tex]W = mg = Ke \\\\K=\frac{mg}{e} \\\\K=\frac{0.0018 \times 9.8}{0.012} \\\\K=\frac{0.01764}{0.012}[/tex]
Spring constant, K = 1.47 N/m.
For the electrostatic force:
[tex]F = ke\\\\F = 1.47 \times 0.08[/tex]
F = 0.01176 Newton.
Coulomb's law of electrostatic force.
Mathematically, the charge in an electric field is given by this formula:
[tex]q = \sqrt{\frac{F}{k} } \times r[/tex]
Substituting the given parameters into the formula, we have;
[tex]q = \sqrt{\frac{0.01176 }{8.99 \times 10^9} } \times 0.048\\\\q=\sqrt{1.3228 \times 10^{-12}} \times 0.048\\\\q=1.1502 \times 10^{-6} \times 0.048\\\\q= 5.521 \times 10^{-8}\;C[/tex]
Note: 1 nC = [tex]1 \times 10^{-9}\;C[/tex]
Charge, q = 55.21 nC.
Read more on electric field here: https://brainly.com/question/14372859