What is the measure of circumscribed LX?
O 45°
O 50°
O 90°
O 950

Answer:
90°
Step-by-step explanation:
The angle a tangent makes with a radius at the point of tangency is 90 deg.
There are three 90-deg angles in the quadrilateral, so the 4th angle must also measure 90 deg.
Answer: 90°
Based on the tangent theorem the measure of the circumscribed ∠X is: 90°.
The tangent theorem states that an angle of 90 degrees is formed at the point of tangency where a tangent meets the radius of a circle.
YX and WX are tangents of the circle.
m∠Y = m∠W = 90°
Sum of interior angles of a quadrilateral is 360°
m∠X = 360 - 90 - 90 - 90
m∠X = 90°
Therefore, based on the tangent theorem the measure of the circumscribed ∠X is: 90°.
Learn more about the tangent theorem on:
https://brainly.com/question/9892082