Answer:
Step-by-step explanation:
Let REPEAT [tex]_{TM[/tex]= { | M is a TM, and for all s ∈ L(M), s = uv where u = v }
To prove that REPEAT [tex]_{TM[/tex] is undecidable.
Let REPEAT [tex]_{TM[/tex] {| M is a TM that does not accept M}
Then, we form a TM u for L by applying TM v as a subroutine.
Assume Repeat is decidable
Let M be the algorithm that TM which decides the REPEATU = on input "s" simulate the M
Accept; if M ever enters the accept state
Reject; if M ever enters the reject state
U does not decide the REPEAT as it may loop over s
so REPEAT is undecidable