Respuesta :

Answer:

Option (B)

Step-by-step explanation:

The given expression is,

[tex]\sqrt{22x^6}\div\sqrt{11x^4}[/tex]

We can rewrite this expression as,

[tex]\frac{\sqrt{22x^6}}{\sqrt{11x^4} }[/tex]

Solving it further,

[tex]\frac{\sqrt{22x^6}}{\sqrt{11x^4} }=\frac{\sqrt{22(x^3)^2} }{\sqrt{11(x^2)^2} }[/tex] [Since [tex]x^3\times x^3=x^6[/tex] and [tex]x^{2}\times x^{2}=x^4[/tex]]

         [tex]=\sqrt{\frac{22(x^3)^2}{11(x^2)^2} }[/tex] [Since [tex]\frac{\sqrt{a} }{\sqrt{b} }=\sqrt{\frac{a}{b} }[/tex]]

         [tex]=\frac{x^3}{x^2}\sqrt{\frac{22}{11} }[/tex]

         [tex]=x\sqrt{2}[/tex]

Therefore, quotient will be x√2.

Option (B) will be the correct option.