Respuesta :
[tex]y-4=\dfrac{1}{4}(x-8)[/tex]
The slope-intercept form: [tex]y=mx+b[/tex]
m - a slope
b - y-intercept (0; b)
The point-slope form: [tex]y-y_0=m(x-x_0)[/tex]
therefore [tex]m=\dfrac{1}{4}[/tex]
We have a point (0; 2) ⇒ it's the y-intercept, therefore [tex]b=2[/tex]
Answer: [tex]C)\ y=\dfrac{1}{4}x+2[/tex]
Other method:
[tex]y-4=\dfrac{1}{4}(x-8)\ \ \ \ \ |use\ distributive\ property:\ a(b-c)=ab-ac\\\\y-4=\dfrac{1}{4}x-2\ \ \ \ \ \ |add\ 4\ to\ both\ sides\\\\y=\dfrac{1}{4}x+2[/tex]
The slope-intercept form: [tex]y=mx+b[/tex]
m - a slope
b - y-intercept (0; b)
The point-slope form: [tex]y-y_0=m(x-x_0)[/tex]
therefore [tex]m=\dfrac{1}{4}[/tex]
We have a point (0; 2) ⇒ it's the y-intercept, therefore [tex]b=2[/tex]
Answer: [tex]C)\ y=\dfrac{1}{4}x+2[/tex]
Other method:
[tex]y-4=\dfrac{1}{4}(x-8)\ \ \ \ \ |use\ distributive\ property:\ a(b-c)=ab-ac\\\\y-4=\dfrac{1}{4}x-2\ \ \ \ \ \ |add\ 4\ to\ both\ sides\\\\y=\dfrac{1}{4}x+2[/tex]