Respuesta :
Assuming a CONSTANT deceleration of 7.00 m/s^2,
final velocity, v = 0 m/s
acceleration, a = -7.00 m/s^2,
displacement, s = 92 m
using v^2 = u^2 + 2as
0^2 = u^2 + 2 (-7.00) (92)
initial velocity, u = sqrt (1288) = 35.9 m/s
This is the speed of the car just before braking.
i dont take credit for this answer i just simply did my research so you can get your answer quickly! hope this helped <3
By definition, we have that the final speed is given by:
[tex] vf ^ 2 = vo ^ 2 + 2ad
[/tex]
Where,
vo: initial speed
a: acceleration
d: displacement
Substituting values we have:
[tex] 0 ^ 2 = vo ^ 2 + 2 (-4) (65)
[/tex]
From here, we clear the value of the initial velocity.
We have then:
[tex] 0 = vo ^ 2 - 520
vo ^ 2 = 520
[/tex]
[tex] vo = \sqrt{520} [/tex]
[tex] vo = 22.8 \frac{m}{s}
[/tex]
Answer:
The speed of the car just before breaking was:
[tex] vo = 22.8 \frac{m}{s} [/tex]