A metal hollow bar whose cross section and dimension are shown below weighs 8x10^3 kg/m^3 and measure 2m in length ..determine the mass of the metal bar with the square hole section.

40cm -- square

60 cm -- hexagon

A metal hollow bar whose cross section and dimension are shown below weighs 8x103 kgm3 and measure 2m in length determine the mass of the metal bar with the squ class=

Respuesta :

1) We calculate the volume of a metal bar (without the hole).

volume=area of hexagon x length
area of hexagon=(3√3 Side²)/2=(3√3(60 cm)²) / 2=9353.07 cm²
9353.07 cm²=9353.07 cm²(1 m² / 10000 cm²)=0.935 m²

Volume=(0.935 m²)(2 m)=1.871 m³

2) we calculate the volume of the parallelepiped

Volume of a parallelepiped= area of the section  x length
area of the section=side²=(40 cm)²=1600 cm²
1600 cm²=(1600 cm²)(1 m² / 10000 cm²=0.16 m²
Volume of a parallelepiped=(0.16 m²)(2 m)=0.32 m³

3) we calculate the volume of a metal hollow bar:
volume of a metal hollow bar=volume of a metal bar -  volume of a parallelepiped

Volume of a metal hollow bar=1.871 m³ - 0.32 m³=1.551 m³

4) we calculate the mass of the metal bar

density=mass/ volume  ⇒ mass=density *volume

Data:
density=8.10³ kg/m³
volume=1.551 m³

mass=(8x10³ Kg/m³ )12. * (1.551 m³)=12.408x10³ Kg

answer: The mas of the metal bar is 12.408x10³ kg  or   12408 kg