Respuesta :
easy
f(x)=x^3+x^2+1
g(x)=-6x^2+2
(f+g)(x)=
x^3+x^2+1-6x^2+2=
x^3+x^2-6x^2+1+2=
x^3-5x^2+3
(f+g)(x)=x^3-5x^2+3
domain is all real number
f(x)=x^3+x^2+1
g(x)=-6x^2+2
(f+g)(x)=
x^3+x^2+1-6x^2+2=
x^3+x^2-6x^2+1+2=
x^3-5x^2+3
(f+g)(x)=x^3-5x^2+3
domain is all real number
Answer:
Given functions,
[tex]f(x) = x^3 + x^2 + 1-----(1)[/tex]
[tex]g(x) =-6x^2 + 2-----(2)[/tex]
[tex](f+g)(x)=f(x)+g(x)[/tex]
From equation (1) and (2),
[tex](f+g)(x)=x^3 + x^2 + 1-6x^2 + 2[/tex]
Combine like terms,
[tex](f+g)(x)=x^3- 5x^2 + 3[/tex]
Which is a polynomial.
∵ The domain of a polynomial is the set of all real numbers,
Hence, the domain of function (f+g)(x) is the set of all real numbers.