Respuesta :
[tex]Q=cm\Delta T\\
\Delta T=T_{f}-T_{i}\\\\
Q=cm(T_{f}-T_{i}) \ \ \ |:cm\\\\
T_{f}-T_{i}=\frac{Q}{cm}\\\\
T_{i}=T_{f}-\frac{Q}{mc}\\\\
T_{f}=47,8^{o}C\\
Q=1,5kJ=1500J\\
m=0,663kg=663g\\
c=0,385\frac{J}{g^{o}C}\\\\\\
T_{i}=47,8^{o}C-\frac{1500J}{663g*0,385\frac{J}{g^{o}C}}=47,8^{o}C-5,88^{o}C=41,92^{o}C[/tex]
Answer:
The initial temperature of the copper was 41.9 °C
Explanation:
Data:
Heat transferred, Q = 1.5 kJ = 1500 J
Mass of copper, m = 0.663 kg = 663 g
Final temperature, T2 = 47.8 °C
Specific heat capacity of copper, cp = 0.385 J/(g °C)
Initial temperature, T1 = ? °C
The heat transferred is computed as follows:
Q = m*cp*(T2 - T1)
Isolating T1:
T1 = T2 - Q/(m*cp)
Replacing with data (units are omitted):
T1 = 47.8 - 1500/(663*0.385)
T1 = 41.9 °C