Respuesta :

Answer:

          sum of the roots:    [tex]x_1+x_2=4\frac12[/tex]

          product of the roots:     [tex]x_1x_2=-5[/tex]            

Step-by-step explanation:

[tex]2x^2-9x-10=0\quad\implies\quad a=2\,,\ b=-9\,,\ c=-10[/tex]

[tex]b^2-4ac=(-9)^2-4(2)(-10)=81+80=161>0[/tex]

From Vieta's formulas applied to quadratic polynomial we have:

if    [tex]b^2-4ac\geqslant0[/tex]   then

sum of roots:    [tex]x_1+x_2=-\dfrac ba=-\dfrac{-9}2=4\frac12[/tex]

product of the roots:     [tex]x_1x_2=\dfrac ca=\dfrac{-10}2=-5[/tex]