Respuesta :

Space

Answer:

[tex]\displaystyle \int^{1}_{0} \int^{2-y}_{y^3} dx\ dy = \frac{5}{4}[/tex]

General Formulas and Concepts:
Calculus

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                           [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:                                 [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Integration Property [Multiplied Constant]:                                                     [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Integration Property [Addition/Subtraction]:                                                   [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

Multivariable Calculus

Integration

  • Integrals

Fubini's Theorem:                                                                                             [tex]\displaystyle \iint_R{f(x, y)} \, dA = \int\limits^b_a \int\limits^{g_2(x)}_{g_1(x)} {f(x, y)} \, dy \, dx[/tex]

  • Horizontal Cross Section:                                                                         [tex]\displaystyle \iint_R {f(x, y)} \ dA = \int\limits^{y = d}_{y = c} \int\limits^{x = h(y)}_{x = g(y)} {f(x, y)} \, dx \, dy[/tex]

Area of a Plane Region Formula:                                                                     [tex]\displaystyle A = \iint_R dA[/tex]

Explanation:

Step 1: Define

Identify.

[tex]\displaystyle \left \{ \begin{array}{ccc}x = y^3 \\ x = 0 \\ x + y = 2 \end{array}[/tex]

See the graph of the given curves in the attachment.

Step 2: Find Area Pt. 1

  1. [Curves] Rearrange:                                                                                 [tex]\displaystyle \left \{ \begin{array}{ccc}x = y^3 \\ x = 0 \\ x = 2 - y \end{array}[/tex]
  2. [Graph] Define bounds of integration c and d:                                       [tex]\displaystyle \left \{ {{d = 2} \atop {c = 0}} \right.[/tex]
  3. [Graph] Identify bounds of integration g(y) and h(y):                             [tex]\displaystyle \left \{ {{h(y) = 2 - x} \atop {g(y) = y^3}} \right.[/tex]

Step 3: Find Area Pt. 2

  1. [Area of a Plane Region Formula] Derive [Fubini's Theorem]:               [tex]\displaystyle A = \iint_R dA = \int\limits^b_a \int\limits^{g_2(x)}_{g_1(x)} {} \, dy \, dx[/tex]
  2. [Area] Derive [Horizontal Cross Section]:                                               [tex]\displaystyle A = \int\limits^b_a \int\limits^{g_2(x)}_{g_1(x)} {} \, dy \, dx = \int\limits^{y = d}_{y = c} \int\limits^{x = h(y)}_{x = g(y)} {} \, dx \, dy[/tex]
  3. [Area] Substitute in variables:                                                                   [tex]\displaystyle A = \int\limits^{1}_{0} \int\limits^{2 - y}_{y^3} {} \, dx \, dy[/tex]
  4. [Inner Integral] Integrate [Integration Rule - Reverse Power Rule]:       [tex]\displaystyle A = \int\limits^{1}_{0} {\bigg[ x \Big|\limits^{2 - y}_{y^3} \bigg]} \, dy[/tex]
  5. [Inner Integral] Evaluate [Integration Rule - FTC 1]:                                 [tex]\displaystyle A = \int\limits^{1}_{0} {\big( 2 - y - y^3 \big)} \, dy[/tex]
  6. [Integral] Rewrite [Integration Property - Addition/Subtraction]:           [tex]\displaystyle A = \int\limits^{1}_{0} {2} \, dy - \int\limits^{1}_{0} {y} \, dy - \int\limits^{1}_{0} {y^3} \, dy[/tex]
  7. [1st Integral] Rewrite [Integration Property - Multiplied Constant]:       [tex]\displaystyle A = 2\int\limits^{1}_{0} {} \, dy - \int\limits^{1}_{0} {y} \, dy - \int\limits^{1}_{0} {y^3} \, dy[/tex]
  8. [Integrals] Integrate [Integration Rule - Reverse Power Rule]:               [tex]\displaystyle A = 2y \Big| \limits^{1}_{0} - \frac{y^2}{2} \bigg| \limits^{1}_{0} - \frac{y^4}{4} \bigg| \limits^{1}_{0}[/tex]
  9. [Integrals] Evaluate [Integration Rule - FTC 1]:                                         [tex]\displaystyle A = 2 - \frac{1}{2} - \frac{1}{4}[/tex]
  10. Simplify:                                                                                                     [tex]\displaystyle A = \frac{5}{4}[/tex]

∴ the area of the plane region R bounded by the curves given is 1.25.

---

Learn more about integrals: https://brainly.com/question/20197752

Learn more about multivariable calculus: https://brainly.com/question/12269640

---

Topic: Multivariable Calculus

Unit: Double Integrals and Area

Ver imagen Space