A proton starting from rest travels through a potential of 644 X 106V and then moves into a uniform magnetic field, B = 0.02 T, perpendicular to the protons velocity. What is the radius of the proton's resulting orbit in m? Mp 1.67 x 10-27 kg, e = 1.6 x 10-19 C.

Respuesta :

Given :

Potential ,

[tex]P=644 \times 10^6\ V\\ \\P=6.44\times 10^8\ V[/tex]

Uniform magnetic field , B = 0.02 T .

Mass of proton , [tex]M_p=1.67\times 10^{-27}\ kg[/tex] .

Charge on proton , [tex]e=1.6\times 10^{-19}\ C[/tex] .

Also , velocity of proton is perpendicular to magnetic field .

To Find :

The radius of the proton's resulting orbit .

Solution :

Now , when velocity is perpendicular to magnetic field radius of orbit is given by :

[tex]r=\sqrt{\dfrac{2VM_p}{eB^2}}[/tex]

Putting all given values above :

[tex]r=\sqrt{\dfrac{2\times 6.44\times 10^8\times 1.67\times 10^{-27}}{1.6\times 10^{-19}\times 0.02^2}}\\\\r=183.33 \ m[/tex]

Therefore , radius of orbit is 183.33 m .

Hence , this is the required solution .