La ecuación de la posición de una esferita está dada por: r(t)=(2.Cos(πt) i-3.Sen(πt) j) (m) ¿Cuál es la velocidad de la esferita a los 0,25 segundos? Calcule la aceleración media en los primeros tres segundos

Respuesta :

Answer:

v = (-4.44 i^ + 6.66 j^ )  m/s, a_average =( 0 i^ -2π j^) m/s²

Explanation:

The expression left corresponds to an oscillatory movement (MAS), the speed is defined by

         v = dr / dt

the function of position

         r = 2 cos πt  i^  + 3 sin πt  j^

let us note that it is a movement in two dimensions

let's perform the derivative

          v = -2π sin πt  i^  + 3π cos πt  j^

we evaluate this expression for t = 0.25 s, remember that the angle is in radians

          v = -2π sin (π 0.25) i^ + 3π cos (π 0.25) j^

           v = (-4.44 i^ + 6.66 j^ )  m/s

To calculate the mean acceleration we use the expression

           a = ([tex]v_{f} - v_{o}[/tex]) / Δt

 

indicates that the time is the first 3 s

       

we look for the initial velocity t = 0 s

           v₀ = 0 i ^ + 3π j ^

         

we look for the fine velocity, t = 3 s

          v_f = - 2π sin (π 3) + 3π cos (π 3) j ^

          v_f = 0 i ^ - 3π j ^

we calculate the average acceleration

            Δt = (3 -0) = 3 s

           a_average = (0-0) / 3 i ^ + (-3π - 3π) / 3

           a_average = (0 i ^ -2π j ^ ) m/s²