Respuesta :
Answer(s):
[tex]m=1.1, m=11/10,m=1\frac{1}{10}[/tex]
Step-by-step explanation:
Start with:
[tex]\frac{5}{7} m-\frac{1}{7} =\frac{9}{14}[/tex]
Let's add [tex]\frac{1}{7}[/tex] to both sides of the equation.
[tex]\frac{5}{7} m=\frac{9}{14}+\frac{1}{7}[/tex]
Add [tex]\frac{9}{14}+\frac{1}{7}[/tex] by multiplying [tex]\frac{1}{7}[/tex] by [tex]\frac{2}{2}[/tex] to get a common denominator.
[tex]\frac{9}{14}+\frac{2}{14}[/tex]
Add:
[tex]\frac{11}{14}[/tex]
Now back to our main equation:
[tex]\frac{5}{7}m=\frac{11}{14}[/tex]
Let's rewrite to make finding the cross product easier.
[tex]m[/tex] × [tex]\frac{5}{7} =\frac{11}{14}[/tex]
Find the cross product:
[tex]m[/tex] × [tex]70=77[/tex]
Rewrite.
[tex]70m=77[/tex]
Divide by the coefficient of [tex]m[/tex], which is [tex]70[/tex].
[tex]m=1.1[/tex]
Answer:
m = [tex]\frac{11}{10}[/tex]
Step-by-step explanation:
First you need to add [tex]\frac{1}{7}[/tex] to both sides to get m by itself. [tex]\frac{1}{7}[/tex] = [tex]\frac{2}{14}[/tex] (feel free to ask if you don't understand why this is the case). [tex]\frac{2}{14} + \frac{9}{14} = \frac{11}{14}[/tex]
So then you get [tex]\frac{5}{7} m = \frac{11}{14}[/tex]. Divide both sides by [tex]\frac{5}{7} = \frac{10}{14}[/tex]. Remember: To divide fractions, you multiply the first number by the reciprocal of the second number. [tex]\frac{11}{14}[/tex] ÷ [tex]\frac{10}{14} = \frac{11}{14}[/tex] × [tex]\frac{14}{10}[/tex]. The two 14s cancel out, and you are left with [tex]\frac{11}{10}[/tex], or [tex]1\frac{1}{10}[/tex].
I hope this helps!