Respuesta :

Answer(s):

[tex]m=1.1, m=11/10,m=1\frac{1}{10}[/tex]

Step-by-step explanation:

Start with:

[tex]\frac{5}{7} m-\frac{1}{7} =\frac{9}{14}[/tex]

Let's add [tex]\frac{1}{7}[/tex] to both sides of the equation.

[tex]\frac{5}{7} m=\frac{9}{14}+\frac{1}{7}[/tex]

Add [tex]\frac{9}{14}+\frac{1}{7}[/tex] by multiplying [tex]\frac{1}{7}[/tex] by [tex]\frac{2}{2}[/tex] to get a common denominator.

[tex]\frac{9}{14}+\frac{2}{14}[/tex]

Add:

[tex]\frac{11}{14}[/tex]

Now back to our main equation:

[tex]\frac{5}{7}m=\frac{11}{14}[/tex]

Let's rewrite to make finding the cross product easier.

[tex]m[/tex] × [tex]\frac{5}{7} =\frac{11}{14}[/tex]

Find the cross product:

[tex]m[/tex] × [tex]70=77[/tex]

Rewrite.

[tex]70m=77[/tex]

Divide by the coefficient of [tex]m[/tex], which is [tex]70[/tex].

[tex]m=1.1[/tex]

Answer:

m = [tex]\frac{11}{10}[/tex]

Step-by-step explanation:

First you need to add [tex]\frac{1}{7}[/tex] to both sides to get m by itself. [tex]\frac{1}{7}[/tex] = [tex]\frac{2}{14}[/tex] (feel free to ask if you don't understand why this is the case). [tex]\frac{2}{14} + \frac{9}{14} = \frac{11}{14}[/tex]

So then you get [tex]\frac{5}{7} m = \frac{11}{14}[/tex]. Divide both sides by [tex]\frac{5}{7} = \frac{10}{14}[/tex]. Remember: To divide fractions, you multiply the first number by the reciprocal of the second number. [tex]\frac{11}{14}[/tex] ÷  [tex]\frac{10}{14} = \frac{11}{14}[/tex] × [tex]\frac{14}{10}[/tex]. The two 14s cancel out, and you are left with [tex]\frac{11}{10}[/tex], or [tex]1\frac{1}{10}[/tex].

I hope this helps!