Respuesta :

Step-by-step explanation:

∫₁² [e^(1/x⁴) / x⁵] dx

∫₁² [e^(x⁻⁴) x⁻⁵] dx

If u = x⁻⁴, then du = -4x⁻⁵ dx, and -¼ du = x⁻⁵ dx.

∫ e^u (-¼ du)

-¼ ∫ e^u du

-¼ e^u + C

-¼ e^(x⁻⁴) + C

Evaluate between x=1 and x=2.

-¼ e^(2⁻⁴) − -¼ e^(1⁻⁴)

-¼ e^(1/16) + ¼ e

(e − ¹⁶√e) / 4

Answer:

[tex]=\frac{e-\sqrt[16]{e}}{4}[/tex]

Step-by-step explanation:

So we have the definite integral:

[tex]\int\limits^2_1{\frac{e^{\frac{1}{x^4}}}{x^5} \, dx[/tex]

Again, we can use u-substitution. Let u equal 1/x^4. So:

[tex]u=\frac{1}{x^4}=x^{-4}[/tex]

Find the derivative:

[tex]du=-4x^{-5}=-4(\frac{1}{x^5})dx[/tex]

Divide by -4. So du is:

[tex]-\frac{1}{4}du=\frac{1}{x^5}dx[/tex]

Of course, we also need to change our bounds. Substitute 1 and 2 into u:

[tex]u=1/(2)^4=1/16\\u=1/(1)^4=1/1=1[/tex]

Therefore, our new bounds are from 1 to 1/16.

So, make the substitutions:

[tex]=-\frac{1}{4}\int\limits^\frac{1}{16}_1 {e^u} \, du[/tex]

The integral of e^u is just e^u. So:

[tex]=-\frac{1}{4}(e^u)[/tex]

Evaluate for the bounds:

[tex]=-\frac{1}{4}(e^{\frac{1}{16}}-e^{1})[/tex]

Simplify:

[tex]=-\frac{\sqrt[16]{e}-e}{4}[/tex]

Distribute:

[tex]=\frac{e-\sqrt[16]{e}}{4}[/tex]

And we're done!