A track of land has the shape of a trapezoid the lengths of three sides and two interior right angles are given. Determine the two unknown interior angles and the length of the fourth side.

Respuesta :

Answer:

∠C = 106.7°, ∠D = 73.3°, CD = 104.4

Step-by-step explanation:

As shown in the diagram attached, let a point E be made on line BD.

Hence, BE = 130 m

BE + ED = BD

ED = BD - BE

ED = 160 m - 130 m = 30 m

Also, CE = 100 m

Using Pythagoras theorem in triangle CDE:

CD² = CE² + ED²

CD² = 100² + 30²

CD² = 10000 + 900 = 10900

CD = √10900

CD = 104.4

Using sine rule in triangle CDE:

[tex]\frac{sin(D)}{CE}=\frac{sin(E)}{CD}\\ \\sin(D)=\frac{sin(E)}{CD} *CE\\\\sin(D)=\frac{sin(90)}{104.4}*100\\ \\sin(D)=0.9578\\\\D=sin^{-1}0.9578\\\\D=73.3^o[/tex]

In trapezoid ABCD, the sum of angles in a quadralateral is 360°, hence:

∠A + ∠B + ∠C + ∠D = 360

90 + 90 + ∠C + 73.3 = 360

∠C + 253.3 = 360

∠C = 360 - 253.3

∠C = 106.7

Ver imagen raphealnwobi
Ver imagen raphealnwobi