Respuesta :

Answer: [tex]f^{-1}(x)=-\frac{2}{3}x+\frac{7}{3}[/tex]

Step-by-step explanation:

To find the inverse of a function, you want to replace x with y and y with x. Then, you solve for y.

[tex]y=-\frac{3}{2}x+\frac{7}{2}[/tex]                       [replace y with x and x with y]

[tex]x=-\frac{3}{2}y+\frac{7}{2}[/tex]                       [subtract both sides by 7/2]

[tex]x-\frac{7}{2} =-\frac{3}{2}y[/tex]                       [multiply both sides by -2/3]

[tex]-\frac{2}{3} (x-\frac{7}{2} )=y[/tex]                     [distribute]

[tex]y=-\frac{2}{3}x+\frac{7}{3}[/tex]

Now, we have our inverse function.

[tex]f^-^1(x)=-\frac{2}{3}x+\frac{7}{3}[/tex]