Answer:
[tex]f(x)=x+5[/tex].
Step-by-step explanation:
It is given that the graph of a linear function cuts off an isosceles right triangle with legs 5 from the second quadrant of the coordinate plane as shown in below figure.
So, the linear function passes through the points A(-5,0) and B(0,5).
The equation of line is
[tex]y-y_1=\dfrac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
[tex]y-0=\dfrac{5-0}{0-(-5)}(x-(-5))[/tex]
[tex]y=\dfrac{5}{5}(x+5)[/tex]
[tex]y=1(x+5)[/tex]
[tex]y=x+5[/tex]
The linear function is
[tex]f(x)=x+5[/tex]
Therefore, the required linear function is [tex]f(x)=x+5[/tex].