The graph of a linear function cuts off an isosceles right triangle with legs 5 from the second quadrant of the coordinate plane. Find the linear function.

Respuesta :

Answer:

[tex]f(x)=x+5[/tex].

Step-by-step explanation:

It is given that the graph of a linear function cuts off an isosceles right triangle with legs 5 from the second quadrant of the coordinate plane as shown in below figure.

So, the linear function passes through the points A(-5,0) and B(0,5).

The equation of line is

[tex]y-y_1=\dfrac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]

[tex]y-0=\dfrac{5-0}{0-(-5)}(x-(-5))[/tex]

[tex]y=\dfrac{5}{5}(x+5)[/tex]

[tex]y=1(x+5)[/tex]

[tex]y=x+5[/tex]

The linear function is

[tex]f(x)=x+5[/tex]

Therefore, the required linear function is [tex]f(x)=x+5[/tex].

Ver imagen erinna