Answer:
Distance:
[tex]d = 13[/tex]
Step-by-step explanation:
-To determine the distance, use the "distance formula":
[tex]d = \sqrt{(x_{2} - x_{1})^2 + (y_{2} - y_{1})^2}[/tex]
-Apply the points [tex](5,-8)[/tex] and [tex](-7,-3)[/tex] for the distance formula:
[tex]d = \sqrt{(-7 - 5)^2 + (-3 + 8)^2}[/tex]
-Then, solve the equation:
[tex]d = \sqrt{(-7 - 5)^2 + (-3 + 8)^2}[/tex]
[tex]d = \sqrt{(-12)^2 + (5)^2}[/tex]
[tex]d = \sqrt{144 + 25}[/tex]
[tex]d = \sqrt{169}[/tex]
[tex]d = 13[/tex]
So, the actual distance is [tex]13[/tex].