Respuesta :

Answer:

[tex]\lim_{x \to 0} \frac{\frac{1}{6+x}-\frac{1}{6}}{x}=-1/36[/tex]

Step-by-step explanation:

So we have the limit:

[tex]\lim_{x \to 0} \frac{\frac{1}{6+x}-\frac{1}{6}}{x}[/tex]

Let's remove the fractions in the denominator by multiplying both layers by (6+x)(6). So:

[tex]\lim_{x \to 0} \frac{\frac{1}{6+x}-\frac{1}{6}}{x}\cdot (\frac{(6+x)(6)}{(6+x)(6)})[/tex]

Distribute:

[tex]=\lim_{x \to 0} \frac{(6)-(6+x)}{x(6+x)(6)}[/tex]

Simplify the numerator:

[tex]=\lim_{x \to 0} \frac{6-6-x}{x(6+x)(6)}\\=\lim_{x \to 0} \frac{-x}{x(6+x)(6)}[/tex]

Both the numerator and the denominator have an x. Cancel:

[tex]=\lim_{x \to 0} \frac{-1}{(6+x)(6)}[/tex]

Direct substitution:

[tex]= \frac{-1}{(6+0)(6)}[/tex]

Simplify:

[tex]=-1/36[/tex]

And that's our answer.

And we're done!

Answer:

-1/36

Step-by-step explanation:

lim(x→0) [1/(6 + x) − 1/6] / x

The common denominator of the two fraction in the numerator is 6(6 + x) = 36 + 6x.

lim(x→0) [6/(36 + 6x) − (6 + x)/(36 + 6x)] / x

Combine the fractions.

lim(x→0) [(6 − 6 − x) / (36 + 6x)] / x

Simplify.

lim(x→0) [-x / (36 + 6x)] / x

Divide.

lim(x→0) -1 / (36 + 6x)

Evaluate.

-1/36