Respuesta :

Answer:

[tex] \boxed{\sf \alpha = - 3.6} [/tex]

Step-by-step explanation:

[tex] \sf Solve \: for \: \alpha : \\ \sf \implies 1.25\alpha + 7 = 2.5 \\ \\ \sf Subtract \: 7 \: from \: both \: sides: \\ \sf \implies 1.25 \alpha + (7 - \boxed{ \sf 7}) = 2.5 - \boxed{ \sf 7} \\ \\ \sf 7 - 7 = 0 : \\ \sf \implies 1.25 \alpha = 2.5 - 7 \\ \\ \sf 2.5 - 7 = - 4.5 : \\ \sf \implies 1.25 \alpha = \boxed{ \sf - 4.5} \\ \\ \sf Divide \: both \: sides \: of \: 1.25 \alpha = - 4.5 \: by \: 1.25: \\ \sf \implies \frac{1.25 \alpha }{1.25} = - \frac{4.5}{1.25} \\ \\ \sf \frac{1.25}{1.25} = 1 : \\ \sf \implies \alpha = - \frac{4.5}{1.25} \\ \\ \sf - \frac{4.5}{1.25} = - 3.6 : \\ \sf \implies \alpha = - 3.6[/tex]

GiveN:

  • 1.25[tex]\alpha[/tex] + 7 = 2.5

What to do?

  • We have to solve for [tex]\alpha[/tex]

Step-by-step explanation:

For finding [tex]\alpha[/tex], We need to follow the steps below.

Shifting 7 by subtracting from both sides of the eq.

⇒ 1.25[tex]\alpha[/tex] = 2.5 - 7

⇒ 1.25[tex]\alpha[/tex] = -4.5

Now dividing 1.25 from both sides,

⇒ [tex]\alpha[/tex] = -4.5 / 1.25

⇒ [tex]\alpha[/tex] = -3.6

Answer:

  • m = -3.6