Respuesta :
Answer:
[tex] \boxed{\sf \alpha = - 3.6} [/tex]
Step-by-step explanation:
[tex] \sf Solve \: for \: \alpha : \\ \sf \implies 1.25\alpha + 7 = 2.5 \\ \\ \sf Subtract \: 7 \: from \: both \: sides: \\ \sf \implies 1.25 \alpha + (7 - \boxed{ \sf 7}) = 2.5 - \boxed{ \sf 7} \\ \\ \sf 7 - 7 = 0 : \\ \sf \implies 1.25 \alpha = 2.5 - 7 \\ \\ \sf 2.5 - 7 = - 4.5 : \\ \sf \implies 1.25 \alpha = \boxed{ \sf - 4.5} \\ \\ \sf Divide \: both \: sides \: of \: 1.25 \alpha = - 4.5 \: by \: 1.25: \\ \sf \implies \frac{1.25 \alpha }{1.25} = - \frac{4.5}{1.25} \\ \\ \sf \frac{1.25}{1.25} = 1 : \\ \sf \implies \alpha = - \frac{4.5}{1.25} \\ \\ \sf - \frac{4.5}{1.25} = - 3.6 : \\ \sf \implies \alpha = - 3.6[/tex]
GiveN:
- 1.25[tex]\alpha[/tex] + 7 = 2.5
What to do?
- We have to solve for [tex]\alpha[/tex]
Step-by-step explanation:
For finding [tex]\alpha[/tex], We need to follow the steps below.
Shifting 7 by subtracting from both sides of the eq.
⇒ 1.25[tex]\alpha[/tex] = 2.5 - 7
⇒ 1.25[tex]\alpha[/tex] = -4.5
Now dividing 1.25 from both sides,
⇒ [tex]\alpha[/tex] = -4.5 / 1.25
⇒ [tex]\alpha[/tex] = -3.6
Answer:
- m = -3.6