An argon laser emits light of wavelength 488 nm at power of 100 mW (milliwatt). Calculate the energy of the photons that are emitted. If one focus the light onto a surface using a microscope objective to a circle with diameter 5 μm (micrometer), what is the power density of the light at unit W/m2 . Calculate the number of photons emitted by the laser in ten seconds. What is the photon flux of the focused beam in 1 Å2 , roughly the area of one atom, in unit photon/s/Å2
I got 245x10^17 photons/second
Having trouble with the rest!

Respuesta :

Answer:

a

  [tex]E = 4.0733 *10^{-19}  \  J [/tex]

b

   [tex]n  =  2.45 *10^{16} [/tex]

c

  tex]k =  2.45 *10^{19} \ photon /  second[/tex]

Explanation:

From the question we are told that

   The wavelength is  [tex]\lambda  =  488 \ nm  =  488*10^{-9} \  m[/tex]

   The  power is  [tex]P  =  100 \  mW   =  100 *10^{-3} \  W[/tex]

    The diameter of the circle is  [tex]d =  5 \mu m =  5.0*10^{-6}\ m[/tex]

     The time taken is  [tex]t =  10 \  s[/tex]

Generally the energy of the photon is mathematically represented as

       [tex]E =  \frac{hc  }{\lambda}[/tex]

substituting  [tex] 6.626*10^{-34} \  J\cdot s [/tex]  for h , [tex]3.0*10^8   \ m/s[/tex] for  c  

So    

      [tex]E =  \frac{ 6.626 *10^{-34} *  3*10^8  }{488 *10^{-9}}[/tex]

=>    [tex]E = 4.0733 *10^{-19}  \  J [/tex]

Generally the number of photons emitted  is mathematically

        [tex]n  =  \frac{P}{E}[/tex]

        [tex]n  =  \frac{10 *10^{-3}}{4.07733 *10^{-19}}[/tex]

         [tex]n  =  2.45 *10^{16} [/tex]

Generally the number of photons emitted in  by the laser in ten seconds is mathematically

       [tex]k = \frac{10}{E}[/tex]

=>     [tex]k = \frac{10}{4.0733 *10^{-19}}[/tex]

=>     [tex]k =  2.45 *10^{19} \ photon /  second[/tex]