Respuesta :

Answer:

The absolute maximum and minimum is [tex]20\; \text{and} -20.[/tex]

Step-by-step explanation:

We first check the critical points on the interior of the domain using the

first derivative test.

[tex]f_x=y-4=0[/tex]

[tex]f_y=x=0[/tex]

The only solution to this system of equations is the point (0, 4), which lies in the domain.

[tex]f_{xx}=0, \;f_{yy}=0\; \text{and}\; f_{xy}=-1[/tex]

[tex]\Rightarrow f_{xx}f_{yy}-f_{xy}=o-1=-1<0[/tex]

[tex]\therefore (0,4)[/tex] is a saddle point.

Boundary points -  [tex](4,0), (-4,0), (0,16)[/tex]

Along boundary  [tex]y=16-x^2[/tex]

   [tex]f=x(16-x^2)-4x[/tex]

[tex]=16x-x^3-4x[/tex]

[tex]\Rightarrow f^'=16-3x^2-4=0[/tex]

[tex]\Rightarrow 3x^2=12[/tex]

[tex]\Rightarrow x=\pm2,\;\;y=14[/tex]

Values of f(x) at these points.

[tex]\begin{array}{}(4,0)=-16\\(-4,0)=16\\(0,16)=0\\(2,14)=20\\(-2,14)=-20\end{array}[/tex]

Therefore, the absolute maximum and minimum is [tex]20\; \text{and} -20.[/tex]