Answer:
[tex]W (2, -1) = 15[/tex]
[tex]W (-3, 6) = -30[/tex]
Step-by-step explanation:
Given
[tex]W (x, y) = 4x^2 + y[/tex]
Required
Find W (2 - 1) , W (-3, 6) .
Solving (1): W (2, - 1)
Substitute 2 for x and -1 for y
[tex]W (x, y) = 4x^2 + y[/tex]
[tex]W (2, -1) = 4 * 2^2 + (-1)[/tex]
[tex]W (2, -1) = 16 -1[/tex]
[tex]W (2, -1) = 15[/tex]
Solving (2): W (-3, 6)
Substitute -3 for x and 6 for y
[tex]W (x, y) = 4x^2 + y[/tex]
[tex]W (-3, 6) = 4 * (-3^2) + 6[/tex]
[tex]W (-3, 6) = -36 + 6[/tex]
[tex]W (-3, 6) = -30[/tex]