Respuesta :

Answer:

The value is  [tex]v  =  0.996c[/tex]

Explanation:

From the question we are that

  The number by which the clock on the spacecraft should be slower than that on the earth is  [tex]N  =  10.7[/tex]

 Generally from the time dilation relation given by Albert Einstein we have that

      [tex]\Delta t _1  =  \frac{ \Delta t_2 }{ \sqrt{1 -  \frac{v^2}{c^2 } } }[/tex]

Here [tex]\Delta t _1[/tex] is the time on earth

        [tex]\Delta t _2[/tex] is the time on the spacecraft

        v is the speed of the spacecraft

        c is the speed of light with value  [tex]c=  3.0*10^{8} \  m/s[/tex]

So

    [tex]\frac{v^2 }{c^2}  =  1 -  \frac{\Delta t_2 }{\Delta t_1}[/tex]

Given that

    [tex]\Delta t_1 =  N \Delta t_2[/tex]

    [tex]\Delta t_1 =  10.7 \Delta t_2[/tex]

So

     [tex]v =  c  \sqrt{ 1 - \frac{ \Delta t_2 }{10.7 \Delta t_2} }[/tex]

      [tex]v  =  0.996c[/tex]