The one-to-one functions g and h are defined as follows. g=((-5, 2),( -3, 8), (-1, - 8), (8, 9))
h(x)=3x+2
Find the folowing:
g^-1 (8)=?
h^-1 (x)=?
(h^-1 \circ h)(-3)=?

Respuesta :

Answer: [tex]g^{-1} (8)=-3[/tex]

[tex]h^{-1}(x)=\dfrac{x-2}{3}[/tex]

[tex](h^{-1} \circ h)(-3)=-3[/tex].

Step-by-step explanation:

Given: The one-to-one functions g and h are defined as follows.

g=((-5, 2),( -3, 8), (-1, - 8), (8, 9))  [here each x= input values , y= output values in (x,y)]

h(x)=3x+2

To find: [tex]g^{-1} (8)[/tex]

As for 8 is a image of -3 ( from point ( -3, 8)).

So, [tex]g^{-1} (8)=-3[/tex]

To find : [tex]h^{-1} (x)[/tex]

Let [tex]y = h(x)=3x+2[/tex]                                  (i)

Then,

 [tex]y=3x+2\Rightarrow\ 3x= y-2\\\\\Rightarrow\ x=\dfrac{y-2}{3}[/tex]

Switch [tex]y[/tex] with [tex]x[/tex] and [tex]x[/tex] with [tex]h^{-1} (x)[/tex], we get

[tex]h^{-1}(x)=\dfrac{x-2}{3}[/tex]                                            (ii)

To find : [tex](h^{-1} \circ h)(-3)[/tex]

Consider [tex](h^{-1} \circ h)(-3)=h^{-1} (h(-3))[/tex]

[tex]=h^{-1}(3(-3)+2)\ \ (using\ (i))\\\\=h^{-1}(-9+2)\\\\=h^{-1}(-7)\\\\= \dfrac{-7-2}{3}\ \ (using\ (ii))\\\\=\dfrac{-9}{3}=-3[/tex]

So, [tex](h^{-1} \circ h)(-3)=-3[/tex].