Respuesta :

Answer:

The solution is     [tex]y = - ln(\frac{5}{2}x^{2} + C)[/tex]

Step-by-step explanation:

To solve the differential equation, we will find [tex]y[/tex]

From the given equation, y' + 5xey = 0.

That is, [tex]y' + 5xe^{y} = 0[/tex]

This can be written as

[tex]\frac{dy}{dx} + 5xe^{y} = 0[/tex]

Then,

[tex]\frac{dy}{dx} = - 5xe^{y}[/tex]

[tex]\frac{dy}{e^{y}} = - 5x dx[/tex]

Then, we integrate both sides

[tex]\int {\frac{dy}{e^{y}}} =\int {- 5x dx}[/tex]

[tex]\int {e^{-y}dy }} =\int {- 5x dx}[/tex]

Then,

[tex]-e^{-y} = -\frac{5}{2}x^{2} + C[/tex]

[tex]e^{-y} = \frac{5}{2}x^{2} + C[/tex]

Then,

[tex]ln(e^{-y}) = ln(\frac{5}{2}x^{2} + C)[/tex]

Then,

[tex]-y = ln(\frac{5}{2}x^{2} + C)[/tex]

Hence,

[tex]y = - ln(\frac{5}{2}x^{2} + C)[/tex]