Use the Laplace transform to solve the following initial value problem:
y"-4y'+5y=0 y(0)=1, y'(0)=2
Using Y for the Laplace transform of y(t), i.e. Y=L{y(t)},
find the equation you get by taking the Laplace transform of the differential equation
______________________________________=0
Now solve for Y(s)=_______________________________
By completing the square in the denominator and inverting the transform, find y(t)=_____________________________

Respuesta :

Answer:

Laplace transform of the original differential equation:

[tex]\left( s^2\, Y(s) - s\cdot y(0) - y^\prime(0)\right) - 4\, (s\, Y(s) - y(0)) + 5\, Y(s) = 0[/tex].

Given that [tex]y(0) = 1[/tex] and [tex]y^\prime(0) = 2[/tex], solve for [tex]Y(s)[/tex] to obtain:

[tex]\displaystyle Y(s) = \frac{s - 2}{s^2 - 4\, s + 5} = \frac{s - 2}{(s - 2)^2 + 1}[/tex].

Apply inverse Laplace transform to obtain:

[tex]y(t) = e^{2 t} \, \sin(t)[/tex].

Step-by-step explanation:

Apply Laplace transform

  • [tex]\mathcal{L}\lbrace y(t) \rbrace = Y(s)[/tex].
  • [tex]\mathcal{L}\left\lbrace y^\prime \right\rbrace = s\, Y(s) - y(0)[/tex].
  • [tex]\begin{aligned}\mathcal{L}\left\lbrace y^{\prime\prime} \right\rbrace &= s\, \mathcal{L}\left\lbrace y^{\prime} \right\rbrace - y^\prime(0) \\ &= s\, \left( s\, Y(s) - y(0) \right) - y^\prime(0) = s^2\, Y(s) - s\cdot y(0) - y^\prime(0) \end{aligned}[/tex].

Apply these two rules to replace all [tex]y(t)[/tex], [tex]y^\prime(t)[/tex], and [tex]y^{\prime\prime}(t)[/tex] in the original equation with their Laplace transforms:

[tex]\underbrace{\left( s^2\, Y(s) - s\cdot y(0) - y^\prime(0)\right)}_{\mathcal{L}\left\lbrace y^{\prime\prime}(t) \right\rbrace} - 4\, \underbrace{(s\, Y(s) - y(0))}_{\mathcal{L}\left\lbrace y^{\prime}(t) \right\rbrace} + 5\, \underbrace{Y(s)}_{\mathcal{L}\left\lbrace y(t) \right\rbrace} = 0[/tex].

Solve for Y(s)

Substitute in the values [tex]y(0) = 1[/tex] and [tex]y^\prime(0) = 2[/tex].

[tex]{\left( s^2\, Y(s) - s - 2 \right)} - 4\, (s\, Y(s) - 2) + 5\, Y(s) = 0[/tex].

Solve for [tex]Y(s)[/tex] after rearranging this equation:

[tex]\displaystyle Y(s) = \frac{s - 2}{s^2 - 4\, s + 5}[/tex].

Note that if denominator is the left-hand side of a quadratic equation, this equation would have no real root. Hence, complete the square in the denominator:

[tex]\displaystyle Y(s) = \frac{s - 2}{s^2 - 4\, s + 5} = \frac{s - 2}{(s - 2)^2 + 1^2}[/tex].

Invert Laplace Transform

Look up a table of Laplace transforms. Apply the rule [tex]\displaystyle \mathcal{L}\left\lbrace e^{\lambda t}\sin(\omega\, t) \right\rbrace = \frac{s - \lambda}{(s - \lambda)^2 + \omega^2}[/tex], where [tex]\lambda = 2[/tex] and [tex]\omega = 1[/tex].

[tex]y(t) = \mathcal{L} \left\lbrace Y(s) \right\rbrace = e^{2 t}\, \sin(t)[/tex].