A tornado may be simulated as a two-part circulating flow in cylindrical coordinates, with Vr = Vz = 0. Vtheta = ωr if r ≤ R and Vtheta = ωR2 / r if r ≥ R. Determine the vorticity and the strain rates in each part of the flow.

Respuesta :

Explanation:

[tex]$V_{\theta} = \omega r , r \leq R $[/tex]

   = [tex]$\omega \frac{R^2}{r} $[/tex]    ,  r> R

[tex]$V_r = V_z = 0$[/tex]

Inner region vorticity

[tex]\Omega _z =\frac{1}{r}.\frac{d}{dt}(rv_{\theta})[/tex]

[tex]\Omega _z =\frac{1}{r}.\frac{d}{dt}(r\omega r), (e\omega \neq 0)[/tex]   (rotational)

Outer region vorticity

[tex]\Omega _z =\frac{1}{r}.\frac{d}{dt}(\omega e^2/r)[/tex]

    = 0  (irrotational)

Strain rate of the inner region

[tex]e_{\theta \theta}=\frac{1}{r}.\frac{\delta u_{\theta}}{\delta \theta}+\frac{u_r}{r}=0[/tex]

[tex]e_{z z}=\frac{\delta u_z}{\delta z}=0[/tex]

[tex]e_{r r}=\frac{\delta u_r}{\delta r}=0[/tex]

[tex]e_{r \theta}=e_{\theta r}=\frac{1}{2}\left \{ r.\frac{\delta}{\delta r} \left ( \frac{u_{\theta}}{r} \right )+\frac{1}{r}.\frac{\delta u_r}{\delta \theta}\right \}[/tex]

[tex]e_{r \theta}=e_{\theta r}=\frac{1}{2}\left \{ r.\frac{\delta}{\delta r} \left ( \frac{\omega r}{r}+\frac{1}{r}(0) \right )\right \}[/tex]

     = 0

Therefore, the strain rate are 0.

[tex]e_{r \theta }= e_{\theta r} =\frac{1}{2}\left \{ r \frac{\delta}{\delta r} \left ( \frac{\delta u_{\theta}}{\delta r} \right )+\frac{1}{r}\frac{\delta v_r}{\delta \theta} \right \}[/tex]

[tex]= \frac{1}{2}\left \{ r. \frac{\delta}{\delta r}\left ( \frac{\omega R^2}{r^2} \right )+\frac{1}{r}. \frac{\delta v_r}{\delta \theta} \right \}[/tex]

[tex]= \frac{1}{2}\left \{ v-\frac{2}{v^3} .\omega R^2 \right \}[/tex]

[tex]= -\frac{\omega R^2}{r^2}[/tex]