Complete Question
The complete question is shown on the first uploaded image
Answer:
The value is [tex]J_n = -0.864 \ A/cm^2[/tex]
Explanation:
Generally for an n-type semiconductor the current density is mathematically represented as
[tex]J_n = -q * d_p * \frac{d p_{n_o}}{d_w}[/tex]
Here [tex]p_{n_o}[/tex] is mathematically represented as
[tex]p_{n_o} = \frac{n_i^2}{n_d}[/tex]
=> [tex]p_{n_o} = \frac{(1.5*10^{10})^2}{10^{16}}[/tex]
=> [tex]p_{n_o} = 2.25 *10^{4} \ cm^{-3}[/tex]
So
[tex]d p_{n_o} = P_n0 - p_{n_o}[/tex]
From the diagram [tex]P_n0 = 10^8 * p_{n_o} [/tex]
=> [tex]P_n0 = 10^8 * (2.25 *10^{4} ) [/tex]
So
[tex]d p_{n_o} = 10^8 * (2.25 *10^{4} ) - 2.25 *10^{4} [/tex]
[tex]d p_{n_o} = 2.25 *10^{12} cm^{-3} [/tex]
So from [tex]J_n = -q * d_p * \frac{d p_{n_o}}{d_w}[/tex]
substitute
[tex]1.60 *10^{-19} \ C[/tex] for q and [tex]w_2 =50 nm = 50*10^{-9} m = 5*10^{-6} cm[/tex]
and from the diagram [tex] w_1 =0 \ cm [/tex]
So
[tex]J_n = -1.60 *10^{-19} *12 * \frac{2.25 *10^{12} }{ 5*10^{-6} - 0 }[/tex]
[tex]J_n = -0.864 \ A/cm^2[/tex]