Answer:
[tex] \boxed{ \bold{ \huge{ \boxed{ \sf{ {x}^{2} + 6x - 15}}}}}[/tex]
Option A is the correct option.
Step-by-step explanation:
[tex] \sf{(3 {x}^{2} + 2x - 8) - (2 {x}^{2} - 4x + 7)}[/tex]
When there is a ( - ) sign in front of an expression in parentheses , change the sign of each term in the expression
[tex] \longrightarrow{ \sf{3 {x}^{2} + 2x - 8 - 2 {x}^{2} + 4x - 7}}[/tex]
Collect like terms
Only coefficients of like terms can be added or subtracted
[tex] \longrightarrow{ \sf{3 {x}^{2} - 2 {x}^{2} + 2x + 4x - 8 - 7}}[/tex]
[tex] \longrightarrow{ \sf{ {x}^{2} + 6x - 8 - 7}}[/tex]
The negative integers are always added but possess the negative ( - ) sign
[tex] \longrightarrow{ \sf{ {x}^{2} + 6x - 15}}[/tex]
Hope I helped!
Best regards! :D