Respuesta :
Answer:
[tex]d = 6[/tex]
Step-by-step explanation:
-To determine the distance, use the Distance Formula to help you solve this problem:
[tex]d = \sqrt{(x_{2} - x_{1})^2 + (y_{2} - y_{1})^2}[/tex]
Apply points [tex](-\frac{1}{2}, -8)[/tex] and [tex](-\frac{1}{2}, -2)[/tex] for the distance formula:
[tex]d = \sqrt{(-\frac{1}{2} + \frac{1}{2})^2 + (-2 + 8)^2}[/tex]
Then, solve:
[tex]d = \sqrt{(-\frac{1}{2} + \frac{1}{2})^2 + (-2 + 8)^2}[/tex]
[tex]d = \sqrt{0^2 + (6)^2}[/tex]
[tex]d = \sqrt{0 + 36}[/tex]
[tex]d = \sqrt{36}[/tex]
[tex]d = 6[/tex]
So, the distance is 6.